Algoritmos criados por pesquisadores do DCC utilizam imagens de satélite e pode auxiliar políticas públicas de saúde para o controle e vigilância epidemiológica
Com a pandemia do coronavírus, muitos deixaram de se preocupar com doenças que há muitos anos também trazem desconforto, sequelas e até a morte. Nos anos de 2010, 2013, 2016 e 2019, Minas Gerais enfrentou epidemias de Dengue, e, também, surtos de Zika e Chikungunya, que tiraram a vida de muitos mineiros. De acordo com dados da Secretaria Estadual de Saúde de Minas Gerais (SES-MG), de 2019 até novembro de 2021, os números de infectados e mortos vêm caindo, mas, somente este ano, já tivemos 84.636 casos prováveis (casos notificados exceto os descartados) de dengue. Desse total, 15.255 casos foram confirmados para a doença e foram confirmados 15 óbitos. Em relação à Febre Chikungunya, foram registrados 6.323 casos prováveis e, desse total, 5.344 casos foram confirmados, tendo confirmado um óbito. Já em relação à Zika, foram registrados 95 casos prováveis e, desse total, 25 confirmados. Não foram confirmados óbitos por Zika em Minas Gerais até o momento. Também há a preocupação com a Febre Amarela, que também é transmitida pelo Aedes aegypti. Mesmo com dados melhores que nos anos anteriores, de acordo com os especialistas, isso não significa que a população deve deixar os cuidados de lado, já que o panorama em todo o Brasil é preocupante.
Pensando nos problemas de saúde pública relacionadas a essas doenças e as formas de identificar áreas de risco para infestação por Aedes aegypti, pesquisadores da Faculdade de Saúde Pública (FSP) e da Universidade de São Paulo (USP) estabeleceram parceria com cientistas do Departamento de Ciências da Computação da Universidade Federal de Minas Gerais (DCC/UFMG), coordenados pelo professor Jefersson Alex dos Santos. O artigo que descreve uma primeira fase do estudo, intitulado “Water tank and swimming pool detection based on remote sensing and deep learning: Relationship with socioeconomic level and applications in dengue control” acaba de ser publicado na prestigiada revista científica on-line PLOS ONE, sob responsabilidade da Public Library of Science.
Iniciado ao final de 2020, as análises estão sendo realizadas a princípio no município de Campinas, no estado de São Paulo. “Esse primeiro artigo abrange quatro regiões de Campinas, São Paulo, caracterizadas por diferentes contextos socioeconômicos. Com mosaicos de imagens obtidos por uma câmera transportada por veículos aéreos não tripulados, desenvolvemos algoritmos baseados em aprendizado profundo para detecção de caixas d’água e piscinas. Um modelo de detecção de objetos, inicialmente criado para áreas de Belo Horizonte, Minas Gerais, foi aprimorado com técnicas de transferência de aprendizagem, que nos permitiu detectar objetos em Campinas com menos amostras e mais eficiência”, disse Jefersson.
Para desenvolver o software, a equipe do DCC utiliza Inteligência Artificial e deep learning, classifica as imagens de sensoriamento remoto, além de modelagens Bayesianas que relacionem o número de fêmeas do Aedes aegypti, assim como os casos de Dengue, Zika e Chikungunya com características socioambientais. “Estudos mostraram que áreas com classificação socioeconômica mais baixa costumam ser mais vulneráveis à dengue e outras doenças mortais semelhantes que podem ser transmitidas por mosquitos. Este primeiro estudo teve como objetivo detectar, em imagens digitais, caixas d’água instaladas em telhados e piscinas para identificação e classificação de áreas com base no índice socioeconômico, para auxiliar programas de saúde pública no controle de doenças vinculadas ao mosquito Aedes aegypti”, conta o professor.
De acordo com os pesquisadores, estudos realizados (bv-cdi fapesp) no estado de São Paulo são extremamente fragmentados, quase sempre sem relacionar o vetor, a população e o ambiente. Além disso, o mosquito Aedes aegypti tem papel fundamental na disseminação de todos esses agravos e existe uma grande dificuldade em identificar áreas de risco, tendo como base somente os indicadores entomológicos tradicionalmente utilizados (Breteau, Predial e de Recipientes). “Nosso objetivo neste trabalho é desenvolver um modelo para identificar áreas de alto risco para infestação por Aedes aegypti e ocorrência de arboviroses (DEN, ZIK e CHIK) baseado na quantificação de fêmeas adultas do vetor, nas características físicas, econômicas, sociais e climáticas das regiões”, descrevem os pesquisadores associados.
A pesquisa tem por objetivo desenvolver metodologias para identificar áreas de alto risco, além de encontrar um padrão espacial. Desta forma, esses métodos, assim como os resultados, após validação, podem ser utilizados na gestão da saúde pública, na otimização de recursos e de tempo na identificação de áreas de ocorrência de agravos, além da aplicação de medidas de vigilância e controle nessas regiões. “Com o auxílio da computação por meio do aprendizado profundo, pretendemos criar uma ferramenta útil para controle do Aedes aegypti e que auxilie nos esforços de prevenção de doenças causadas por mosquitos. Com esse primeiro estudo, concluímos que é possível detectar objetos diretamente relacionados ao nível socioeconômico de uma determinada região a partir de imagens digitais, o que incentiva a praticidade de trabalhos voltados para a saúde pública”, comemora o professor.
Esta matéria teve repercussão nacional e local na CBN, no G1 ,no Guarantã News, no site da UFMG, na Agência Fapesp e no site de divulgação científica americano EurekAlert.
Veja aqui a entrevista do coordenador do projeto para a TV UFMG.