Rodrygo Luis Teodoro Santos


CNPq research fellow: 2

Research areas:
Degrees:

Doutor, University of Glasgow, Escócia, 2013

Room: 4316
Phone: 6578
rodrygo@dcc.ufmg.br

Home page    Lattes    Google scholar 


Information extracted from Lattes platform

Last update: 2023/08/21


Current projects

2023 a AtualRecomendação Contextual em Ambientes Veiculares

Integrantes: Rodrygo Luis Teodoro Santos (coordenador), Marcos André Gonçalves, Leandro Balby Marinho.
2021 a AtualCentro de Inovação em Inteligência Artificial para a Saúde

Integrantes: Virgílio Fernandes de Almeida (coordenador), Rodrygo Luis Teodoro Santos.
2020 a AtualPrograma de Capacidades Analíticas do MPMG

Integrantes: Wagner Meira Jr. (coordenador), Rodrygo Luis Teodoro Santos.
2019 a AtualAprendizado de Representações para Recuperação de Informação Semântica
Produtividade em Pesquisa - PQ 2018
Integrantes: Rodrygo Luis Teodoro Santos (coordenador).
2018 a AtualAprendizado de Representações para Descoberta de Conhecimento Científico
Chamada Universal (CNPq) Edital MCTIC/CNPq 28/2018
Integrantes: Rodrygo Luis Teodoro Santos (coordenador).
2018 a AtualAprendizado de Representações para Busca Acadêmica
Demanda Universal (FAPEMIG) Edital FAPEMIG 01/2018
Integrantes: Rodrygo Luis Teodoro Santos (coordenador).
2016 a AtualInstituto Nacional de Ciência e Tecnologia para uma Sociedade Massivamente Conectada
Institutos Nacionais de Ciência e Tecnologia (INCT)
Integrantes: Virgílio Fernandes de Almeida (coordenador), Rodrygo Luis Teodoro Santos.
2015 a AtualMasWeb - Modelos, Algoritmos e Sistemas para Web
Programa de Apoio a Núcleos de Excelência (PRONEX) Edital FAPEMIG 19/2013
Integrantes: Nivio Ziviani (coordenador), Rodrygo Luis Teodoro Santos.

Current applied research projects

See all projects in Lattes

Recent publications

Articles in journals

Graph-based Recommendation Meets Bayes and Similarity Measures
2020. ACM Transactions on Intelligent Systems and Technology.
Explicit Diversification of Event Aspects for Temporal Summarization
2018. ACM TRANSACTIONS ON INFORMATION SYSTEMS.
Exploiting item co-utility to improve collaborative filtering recommendations
2017. Journal of the Association for Information Science and Technology.
Beyond Relevance
2016. ACM Transactions on Intelligent Systems and Technology.
Assessing the profile of top Brazilian computer science researchers
2015. Scientometrics (Print).
Information Retrieval on the Blogosphere
2012. Foundations and Trends® in Information Retrieval.
On the role of novelty for search result diversification
2012. Information Retrieval (Dordrecht. Online).

Papers in conferences

Evaluating Pre-training Strategies for Collaborative Filtering
2023. UMAP '23: 31st ACM Conference on User Modeling, Adaptation and Personalization.
Efficient Online Learning to Rank for Sequential Music Recommendation
2022. WWW '22: The ACM Web Conference 2022.
Similarity-Based Explanations meet Matrix Factorization via Structure-Preserving Embeddings
2022. IUI '22: 27th International Conference on Intelligent User Interfaces.
On the presence of abusive language in mis/disinformation
2022. SocInfo.
Why Do Document-Level Polarity Classifiers Fail?
2021. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Exploiting performance estimates for augmenting recommendation ensembles
2020. RecSys.
University of Glasgow Terrier Team and UFMG at the TREC 2020 Precision Medicine track
2020. 29th Text REtrieval Conference.
Intent-aware search result diversification
2011. SIGIR.
Exploiting query reformulations for web search result diversification
2010. WWW.
Selectively diversifying web search results
2010. CIKM.

Extended abstracts in conferences

On answer position bias in transformers for question answering
2023. SIGIR.
On extractive summarization for profile-centric neural expert search in academia
2022. SIGIR.
Structured Fine-Tuning of Contextual Embeddings for Effective Biomedical Retrieval
2021. SIGIR '21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.
Document performance prediction for automatic text classification
2019. ECIR.
Traversing semantically annotated queries for task-oriented query recommendation
2019. RecSys.

Abstracts in conferences

Nearby places: on location-based pruning for point-of-interest recommendation
2017. LSRS.

See all publications in Lattes

Current students

MS

João Victor da Silva Dias Canavarro. Audio-driven music recommendation. Início: 2023. Universidade Federal de Minas Gerais (Orientador principal)
Elves Mateus Rodrigues. Reputation-aware academic search. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Aian Shay Bentes Damasceno Cardoso. Conversational search. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Jair Gomes Soares Júnior. Structured neural ranking. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Gabriel de Azevedo Cardoso. Efficient nearest neighbor search. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Regis Nogueira Fontes. Automatic playlist continuation. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Matheus Felipe Eduardo Barbosa. Fashion recommendation. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Breno de Sousa Matos. Claim matching for automated fact-checking. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Rennan Cordeiro Lima. Long document representation. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)

PhD

Rafael Glater da Cruz Machado. Open-domain question answering. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Alberto Hideki Ueda. Clinical decision support. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)
Bruno Laporais Pereira. Off-policy learning for recommendation. Início: 2022. Universidade Federal de Minas Gerais (Orientador principal)

See all students in Lattes

Acesso por PERFIL

Skip to content